机器视觉在缺陷检测上的应用
返回列表作者:林阳机器视觉解决 发布日期: 2020.11.16 浏览:89在现代工业连续、大批量自动化生产中,涉及各种各样的质量检测,如工件表面是否有划痕、印刷品是否有油污或破损、字符印刷正误和电路板线路正误检查等。质量检测系统的性能优劣在一定程度上直接影响着产品质量和生产效率。能够对产品进行在线高速缺陷检测已经成为高质量和 率生产的保证。
产品缺陷检测方法可以分为三种。 种是人工检测法,这种方法不仅成本高,而且在对微小缺陷进行判别时,难以达到所需要的精度和速度,人工检测法还存在劳动强度大、检测标准一致性差等缺点。第二种是机械装置接触检测法,这种方法虽然在质量上能满足生产的需要,但存在检测设备价格高、灵活性差、速度慢等缺点。第三种是机器视觉检测法,即利用图像处理和分析对产品可能存在的缺陷进行检测,这种方法采用非接触的工作方式,安装灵活,测量精度和速度都比较高。同一台机器视觉检测设备可以实现对不同产品的多参数检测,为企业节约大笔设备开支。
待检测物品的缺陷表现在图像上,即为缺陷处的灰度值与标准图像的差异。将缺陷图像的灰度值同标准图像进行比较,判断其差值(两幅图灰度值的差异程度)是否超出预先设定的阈值范围,就能判断出待测物品有无缺陷。
在实际应用中,不同产品对缺陷的定义也不一样。一般来说,产品表面缺陷分为结构缺陷、几何缺陷和颜色缺陷等几种类型。常见的工件完整性检测属于结构缺陷检测,尺寸规格检测属于几何缺陷检测,而印刷品质量检测中常需要进行颜色缺陷检测。机器视觉缺陷检测软件通过对目标表面图像进行预处理,并与标准图像对比,找到其中存在的缺陷,然后识别并判断缺陷种类和严重程度,对产品进行分类分级处理。